

THE UNIVERSITY OF TEXAS

MD Anderson Cancer Center

Management of Myelofibrosis

Srdan Verstovsek, M.D., Ph.D.

Professor of Medicine, Department of Leukemia
University of Texas, MD Anderson Cancer Center
Houston, Texas, USA

Making Cancer History®

Myelofibrosis: Disease Course and Complications

Abbreviations: EMH, extramedullary hematopoiesis; ET, essential thrombocythemia; PMF, primary myelofibrosis; PS, performance status; PV, polycythemia vera; QOL, quality of life. 1. Mughal TI, et al. *Int J Gen Med*. 2014;7:89-101; 2. Haybar H, et al. *Cardiovasc Hematol Disord Drug Targets*. 2017;17(3):161-166.

Early/Prefibrotic Primary Myelofibrosis: Not So Aggressive Neoplasm

 International, observational study in which patients with ET or rediagnosed prePMF were followed for disease progression (N = 1,104)

The Heterogeneous Clinical Spectrum of Prefibrotic Myelofibrosis

Mimicking essential thrombocytopenia

Progression towards overt myelofibrosis

Bleeding and thrombosis

Time

Symptoms of myelofibrosis

Life expectancy

Classic Prognostic Models for Myelofibrosis

Parameter	Included in IPSS ²	Included in DIPSS ³	Included in DIPSS-Plus ⁴
Age > 65 y	Yes (1 point)	Yes (1 point)	Yes ^a
Hgb < 10 g/dL	Yes (1 point)	Yes (2 points)	Yes ^a
WBC $> 25 \times 10^{9}/L$	Yes (1 point)	Yes (1 point)	Yes ^a
PB blood blasts ≥ 1%	Yes (1 point)	Yes (1 point)	Yes ^a
Constitutional symptoms	Yes (1 point)	Yes (1 point)	Yes ^a
Unfavorable karyotype ^b	No	No	Yes (1 point)
RBC transfusion dependence ^c	No	No	Yes (1 point)
Platelet count < 100 × 109/L	No	No	Yes (1 point)
Can be used at any time point	No (only at diagnosis)	Yes	Yes

	Median Survival, Years		
Risk Group	IPSS ²	DIPSS ³	DIPSS-Plus ⁴
Low	11.3	Not reached	15.4
Intermediate-1	7.9	14.2	6.5
Intermediate-2	4.0	4.0	2.9
High	2.3	1.5	1.3

Abbreviations: DIPSS, dynamic International Prognostic Scoring System; Hgb, hemoglobin; IPSS, Interational Prognostic Scoring System; PB, peripheral blood; RBC, red blood cell; WBC, white blood cell count. ^aZero, I, 2, and 3 points are assigned to DIPSS categories of low, intermediate-1, intermediate-2, and high risk, respectively; features are not weighted individually. ^bComplex karyotype or a single or 2 abnormalities including + 8, -7/7q-, i(17q), -5/5q-, 12p-, inv(3), or 11q23 rearrangement.

^cPresentation with symptomatic anemia necessitating RBC transfusion at time of referral, or a history of RBC transfusions for myelofibrosis-associated anemia, without regard to the number of RBC transfusions.

^{1.} Bose P, Verstovsek S. Cancer. 2016;122:681-92; 2. Cervantes F, et al. Blood. 2009;113:2895-2901; 3. Passamonti F, et al. Blood. 2010;115:1703-1708; 4. Gangat N, et al. J Clin Oncol. 2011;29:392-397

Distribution of Myelofibrosis Patients by Different Prognostic Models

Impact of Driver and "High Molecular Risk" Mutations in Primary Myelofibrosis

Many new prognostic scoring systems!

High molecular risk: IDH, EZH2, ASXL1, SRSF2¹⁻⁵

- Worst prognosis in *CALR* neg/*ASXL1* positive³
- 2 or more HMR mutations also worsens survival⁴

Once we are done with prognostication: "Clinical needs" oriented current therapy for MF

Clinical need	Drugs / Intervention	
Anemia	Corticosteroids/prednisoneDanazolerythropoietin	ThalidomideLenalidomide
Symptomatic splenomegaly	Ruxolitinib, fedratinibHydroxyurea	Cladribine, IMIDsSplenectomy
Extramedulary hematopoiesis	Radiation therapy	
Hyperproliferative (early) disease	Interferon, hydroxyurea	
Risk of thrombosis	 Low-dose ASA 	
Constitutional symptoms/ QoL	Ruxolitinib, fedratinibCorticosteroids	
Accelerated/blastic Phase	 Hypomethylating agents 	
Improved survival	Allo SCTRuxolitinib	

MPN Patient Treatment-Watch and Wait 2016 International Landmark Study

- 23% of patients managed with watch and wait had high to moderate symptom burden
- Only 36% reported not currently experiencing symptoms

Despite a significant symptom burden in some untreated patients, around half of the physicians would still observe > 25% of patients at diagnosis

Observe > 25% of patients

Observe 1%-25% of patients

Active treatment

MPN10

Total Symptom Score [MPN-SAF]

An easy tool to assess symptoms in MPNs

- Inflammation
- Splenomegaly
- Anemia

Prognostic variable				
1 to 10 ranking (0 if absent; 1 most favorable; 10 least				
favorable)				
(Absent) 0 1 2 3 4 5 6 7 8 9 10 (Worst Imaginable)				
(Absent) 0 1 2 3 4 5 6 7 8 9 10 (Worst Imaginable)				
(Absent) 0 1 2 3 4 5 6 7 8 9 10 (Worst Imaginable)				
(Absent) 0 1 2 3 4 5 6 7 8 9 10 (Worst Imaginable)				
(Absent) 0 1 2 3 4 5 6 7 8 9 10 (Worst Imaginable)				
(Absent) 0 1 2 3 4 5 6 7 8 9 10 (Worst Imaginable)				
(Absent) 0 1 2 3 4 5 6 7 8 9 10 (Worst Imaginable)				
(Absent) 0 1 2 3 4 5 6 7 8 9 10 (Worst Imaginable)				
(Absent) 0 1 2 3 4 5 6 7 8 9 10 (Worst Imaginable)				

Spleen Volume Response: Ruxolitinib vs. BAT

JUMP study: lower the risk, better the spleen response to ruxolitinib

60.4

Week 36

57.4

Week 24

Phase 3b expanded access study

80

60

20

41.4

Week 4

Patients (%)

Enrolled 2,233 patients in 26 countries

51.6

Week 8

- Allowed DIPSS Low-/Int-1-/Int-2-/High-risk MF
- Lower-risk patients received higher starting doses

56.6

39.3

Week 12

Spleen length reduction from baseline ≥ 50%

Ruxolitinib Efficacy by Titrated Dose: COMFORT-I

Total Symptom Score

- Avoid starting with low dose!
- If starting low then ESCALATE quickly to maximum safe dose
- Doses less than 10mg BID are not effective long term

Rationale for earlier use of ruxolitinib for MF patients – a retrospective Italian study (N = 408)

The influence of disease stage on quality of response

- Spleen/symptom responses are lower if
 - Time interval between MF diagnosis and start of ruxolitinib > 2 years
 - Larger splenomegaly/higher total symptom score
 - Transfusion dependency/lower PLT count
 - IPSS Int-2/High risk

The influence of ruxolitinib dose

- Early MF patients may tolerate a higher ruxolitinib dose
- Patients starting with higher doses have a higher rate of spleen response
- Use of lower ruxolitinib doses may also result in reduced efficacy

Mean Platelet Count and Hemoglobin over Time COMFORT-I¹

Approach to the Treatment of Anemia in MF

JAKARTA: Fedratinib for Int-2/High-Risk Myelofibrosis^{1,2}

- 289 patients with int-2 or high-risk MF, post-PV MF, or ET MF with splenomegaly
- Fedratinib 500 mg (n = 97); 400 mg (n = 96); or placebo (n = 96) once daily for ≥6 cycles

Fedratinib 400 mg (recommended dose)*:

- 37% achieved \geq 35% reduction in spleen volume vs. 1% with placebo (p < 0.0001)
- 40% had ≥ 50% reduction in MF-related symptoms, vs. 9% with placebo

Safety:

- Boxed warning about the risk Wernicke encephalopathy
 - Assess thiamine levels in all patients prior to starting fedratinib, periodically during treatment, and as clinically indicated. If encephalopathy is suspected, fedratinib should be immediately discontinued and parenteral thiamine initiated
- The most common adverse reactions were diarrhea, nausea, anemia, and vomiting

*Recommended dose of fedratinib is 400 mg orally once daily (baseline platelet count of ≥50 x 10°/L)²

Lets talk about something else...

Real-World Survival in Elderly Patients With Myelofibrosis in the United States: Ruxolitinib Exposed vs Unexposed

OS Outcomes*

Parameter	Patients Exposed to RUX (n=272)	Patients Unexposed to RUX (n=1127)
Follow-up, median, mo	14	10
OS, median (95% CI), mo	NR	44.4
Survival, % (95% CI)		
1-у	82	72
2-у	76	61

- Patients in the ruxolitinib-exposed group had a significantly lower risk of mortality compared with the ruxolitinib-unexposed group (adjusted HR, 0.61; 95% CI, 0.45–0.83; P=0.0016)
- Medicare FFS Claims Database (Parts A/B/D)

Kaplan-Meier Analysis of OS*

HR, hazard ratio; NR, not reached.

Verstovsek, EHA 2020, abstract EP1124

^{*} In patients newly diagnosed with intermediate- or high-risk MF after exclusion of patients with MDS, hematologic malignancies (excluding AML), solid tumors, and AML <12 months before, on, or any time after the index date.

COMFORT-I: Effects of Ruxolitinib on Metabolic and Nutritional Parameters in Patients with MF

Mean Change in Serum Albumin

Mean Change in Body Weight

Ruxolitinib Improves Renal Function in MF

Renal Improvement* in Ruxolitinib-Treated Pts vs Matched Controls

Relationship Between Quality of Renal Improvement and FFS

^{*}Best percentage change in eGFR during treatment vs baseline.

Pooled analysis COMFORT-I and COMFORT-II: Correlation of spleen volume reduction at Week 24 and OS

"... Each 10% reduction from baseline in spleen length at Week 24 was associated with a 9% reduction in the risk of death for ruxolitinib-treated patients (HR 0.91, 95% CI 0.84–0.99; p = 0.02)..."

Reasons for stopping Ruxolitinib

Anemia appears to be the leading cause of ruxolitinib discontinuations

JAKARTA-2: Fedratinib after ruxolitinib Re-Analysis Using More Stringent Criteria for Ruxolitinib 'Failure'

- Reanalysis employed a more stringent definition of RUX failure¹
- 79/97 enrolled patients (81%) met the more stringent criteria for RUX R/R (n = 65, 82%) or intolerance (n = 14, 18%)
- Clinically meaningful reductions in splenomegaly and symptom burden in patients with MF who met more stringent criteria
- SVRR = 30%
- Symptoms RR = **27**%
- Safety consistent with prior reports

Ongoing phase III studies of fedratinib in MF patients previously treated with RUX²

FREEDOM

Single group assignment (NCT03755518)

FREEDOM2

Fedratinib vs BAT (NCT03952039)

NCCN Guideline for Treatment of MF-AP or MF-BP/AML

Workup

- BM aspirate and biopsy with trichrome and reticulin stain
- BM cytogenetics (karyotytpe ± FISH)
- Flow cytometry
- Molecular testing

MF-AP

Peripheral blood or BM blasts 10-19%

MF-BP/AML

Peripheral blood or BM blasts ≥20%

Transplant candidate*

Induce remission with HMA or intensive induction chemotherapy

Not a transplant candidate*

- Clinical trial OR
- HMA or low-intensity induction chemotherapy

*Consider ruxolitinib to control splenomegaly and systemic symptoms

Thank You

sverstov@mdanderson.org

Srdan Verstovsek, MD, PhD

Professor, Department of Leukemia

Division of Cancer Medicine

The University of Texas MD Anderson

Cancer Center

Houston, Texas